Extensions 1→N→G→Q→1 with N=C42 and Q=Dic7

Direct product G=N×Q with N=C42 and Q=Dic7
dρLabelID
C42×Dic7448C4^2xDic7448,464

Semidirect products G=N:Q with N=C42 and Q=Dic7
extensionφ:Q→Aut NdρLabelID
C421Dic7 = C42⋊Dic7φ: Dic7/C7C4 ⊆ Aut C421124C4^2:1Dic7448,88
C422Dic7 = C422Dic7φ: Dic7/C7C4 ⊆ Aut C421124C4^2:2Dic7448,98
C423Dic7 = C423Dic7φ: Dic7/C7C4 ⊆ Aut C42564C4^2:3Dic7448,102
C424Dic7 = C424Dic7φ: Dic7/C14C2 ⊆ Aut C42448C4^2:4Dic7448,466
C425Dic7 = C425Dic7φ: Dic7/C14C2 ⊆ Aut C42448C4^2:5Dic7448,471
C426Dic7 = C28.8C42φ: Dic7/C14C2 ⊆ Aut C42112C4^2:6Dic7448,80
C427Dic7 = C4×C4⋊Dic7φ: Dic7/C14C2 ⊆ Aut C42448C4^2:7Dic7448,468
C428Dic7 = C428Dic7φ: Dic7/C14C2 ⊆ Aut C42448C4^2:8Dic7448,469
C429Dic7 = C429Dic7φ: Dic7/C14C2 ⊆ Aut C42448C4^2:9Dic7448,470

Non-split extensions G=N.Q with N=C42 and Q=Dic7
extensionφ:Q→Aut NdρLabelID
C42.1Dic7 = C28.15C42φ: Dic7/C7C4 ⊆ Aut C421124C4^2.1Dic7448,23
C42.2Dic7 = C42.Dic7φ: Dic7/C7C4 ⊆ Aut C421124C4^2.2Dic7448,99
C42.3Dic7 = C42.3Dic7φ: Dic7/C7C4 ⊆ Aut C421124C4^2.3Dic7448,105
C42.4Dic7 = C56.C8φ: Dic7/C14C2 ⊆ Aut C42448C4^2.4Dic7448,18
C42.5Dic7 = C2×C42.D7φ: Dic7/C14C2 ⊆ Aut C42448C4^2.5Dic7448,455
C42.6Dic7 = C42.6Dic7φ: Dic7/C14C2 ⊆ Aut C42224C4^2.6Dic7448,459
C42.7Dic7 = C42.7Dic7φ: Dic7/C14C2 ⊆ Aut C42224C4^2.7Dic7448,460
C42.8Dic7 = C28⋊C16φ: Dic7/C14C2 ⊆ Aut C42448C4^2.8Dic7448,19
C42.9Dic7 = C56.16Q8φ: Dic7/C14C2 ⊆ Aut C421122C4^2.9Dic7448,20
C42.10Dic7 = C4×C4.Dic7φ: Dic7/C14C2 ⊆ Aut C42224C4^2.10Dic7448,456
C42.11Dic7 = C2×C28⋊C8φ: Dic7/C14C2 ⊆ Aut C42448C4^2.11Dic7448,457
C42.12Dic7 = C287M4(2)φ: Dic7/C14C2 ⊆ Aut C42224C4^2.12Dic7448,458
C42.13Dic7 = C4×C7⋊C16central extension (φ=1)448C4^2.13Dic7448,17
C42.14Dic7 = C2×C4×C7⋊C8central extension (φ=1)448C4^2.14Dic7448,454

׿
×
𝔽